"High-performance computing" redirects here. For narrower definitions of HPC, see high-throughput computing and many-task computing. For other uses, see Supercomputer (disambiguation).
The Blue Gene/P supercomputer at Argonne National Lab runs over 250,000 processors using normal data center air conditioning, grouped in 72 racks/cabinets connected by a high-speed optical network
A supercomputer is a computer with a high-level computational capacity. Performance of a supercomputer is measured in floating point operations per second (FLOPS). As of 2015, there are supercomputers which can perform up to quadrillions of FLOPS.
Supercomputers were introduced in the 1960s, made initially, and for decades primarily, by Seymour Cray at Control Data Corporation (CDC), Cray Research and subsequent companies bearing his name or monogram. While the supercomputers of the 1970s used only a few processors, in the 1990s machines with thousands of processors began to appear and, by the end of the 20th century, massively parallel supercomputers with tens of thousands of "off-the-shelf" processors were the norm. Since its introduction in June 2013, China's Tianhe-2 supercomputer is currently the fastest in the world at 33.86 petaFLOPS (PFLOPS), or 33.86 quadrillions of FLOPS.
Supercomputers play an important role in the field of computational science, and are used for a wide range of computationally intensive tasks in various fields, including quantum mechanics, weather forecasting, climate research, oil and gas exploration, molecular modeling (computing the structures and properties of chemical compounds, biological macromolecules, polymers, and crystals), and physical simulations (such as simulations of the early moments of the universe, airplane and spacecraft aerodynamics, the detonation of nuclear weapons, and nuclear fusion). Throughout their history, they have been essential in the field of cryptanalysis.
Systems with massive numbers of processors generally take one of two paths: In one approach (e.g., in distributed computing), a large number of discrete computers (e.g., laptops) distributed across a network (e.g., the Internet) devote some or all of their time to solving a common problem; each individual computer (client) receives and completes many small tasks, reporting the results to a central server which integrates the task results from all the clients into the overall solution In another approach, a large number of dedicated processors are placed in close proximity to each other (e.g. in a computer cluster); this saves considerable time moving data around and makes it possible for the processors to work together (rather than on separate tasks), for example in mesh and hypercube architectures.
The use of multi-core processors combined with centralization is an emerging trend; one can think of this as a small cluster (the multicore processor in a smartphone, tablet, laptop, etc.) that both depends upon and contributes to the cloud.[8][9]
Contents
1 History
2 Hardware and architecture
2.1 Energy usage and heat management
3 Software and system management
3.1 Operating systems
3.2 Software tools and message passing
4 Distributed supercomputing
4.1 Opportunistic approaches
4.2 Quasi-opportunistic approaches
5 Performance measurement
5.1 Capability vs capacity
5.2 Performance metrics
5.3 The TOP500 list
6 Largest Supercomputer Vendors according to the total Rmax (GFLOPS) operated
7 Applications
8 Research and development trends
9 Energy use
10 See also
11 Notes and references
12 External links
History
Main article: History of supercomputing
A Cray-1 preserved at the Deutsches Museum
The history of supercomputing goes back to the 1960s, with the Atlas at the University of Manchester and a series of computers at Control Data Corporation (CDC), designed by Seymour Cray. These used innovative designs and parallelism to achieve superior computational peak performance.
The Atlas was a joint venture between Ferranti and the Manchester University and was designed to operate at processing speeds approaching one microsecond per instruction, about one million instructions per second.The first Atlas was officially commissioned on 7 December 1962 as one of the world's first supercomputers – considered to be the most powerful computer in the world at that time by a considerable margin, and equivalent to four IBM 7094s.
The CDC 6600, released in 1964, was designed by Cray to be the fastest in the world by a large margin. Cray switched from germanium to silicon transistors, which he ran very fast, solving the overheating problem by introducing refrigeration.[13] Given that the 6600 outran all computers of the time by about 10 times, it was dubbed a supercomputer and defined the supercomputing market when one hundred computers were sold at $8 million each
Cray left CDC in 1972 to form his own company, Cray Research.[15] Four years after leaving CDC, Cray delivered the 80 MHz Cray 1 in 1976, and it became one of the most successful supercomputers in history.[18][19] The Cray-2 released in 1985 was an 8 processor liquid cooled computer and Fluorinert was pumped through it as it operated. It performed at 1.9 gigaflops and was the world's fastest until 1990.
While the supercomputers of the 1980s used only a few processors, in the 1990s, machines with thousands of processors began to appear both in the United States and Japan, setting new computational performance records. Fujitsu's Numerical Wind Tunnel supercomputer used 166 vector processors to gain the top spot in 1994 with a peak speed of 1.7 gigaFLOPS (GFLOPS) per processor The Hitachi SR2201 obtained a peak performance of 600 GFLOPS in 1996 by using 2048 processors connected via a fast three-dimensional crossbar network. The Intel Paragon could have 1000 to 4000 Intel i860 processors in various configurations, and was ranked the fastest in the world in 1993. The Paragon was a MIMD machine which connected processors via a high speed two dimensional mesh, allowing processes to execute on separate nodes, communicating via the Message Passing Interface.
"High-performance computing" redirects here. For narrower definitions of HPC, see high-throughput computing and many-task computing. For other uses, see Supercomputer (disambiguation).
The Blue Gene/P supercomputer at Argonne National Lab runs over 250,000 processors using normal data center air conditioning, grouped in 72 racks/cabinets connected by a high-speed optical network
A supercomputer is a computer with a high-level computational capacity. Performance of a supercomputer is measured in floating point operations per second (FLOPS). As of 2015, there are supercomputers which can perform up to quadrillions of FLOPS.[2]
Supercomputers were introduced in the 1960s, made initially, and for decades primarily, by Seymour Cray at Control Data Corporation (CDC), Cray Research and subsequent companies bearing his name or monogram. While the supercomputers of the 1970s used only a few processors, in the 1990s machines with thousands of processors began to appear and, by the end of the 20th century, massively parallel supercomputers with tens of thousands of "off-the-shelf" processors were the norm. Since its introduction in June 2013, China's Tianhe-2 supercomputer is currently the fastest in the world at 33.86 petaFLOPS (PFLOPS), or 33.86 quadrillions of FLOPS.
Supercomputers play an important role in the field of computational science, and are used for a wide range of computationally intensive tasks in various fields, including quantum mechanics, weather forecasting, climate research, oil and gas exploration, molecular modeling (computing the structures and properties of chemical compounds, biological macromolecules, polymers, and crystals), and physical simulations (such as simulations of the early moments of the universe, airplane and spacecraft aerodynamics, the detonation of nuclear weapons, and nuclear fusion). Throughout their history, they have been essential in the field of cryptanalysis.[5]
Systems with massive numbers of processors generally take one of two paths: In one approach (e.g., in distributed computing), a large number of discrete computers (e.g., laptops) distributed across a network (e.g., the Internet) devote some or all of their time to solving a common problem; each individual computer (client) receives and completes many small tasks, reporting the results to a central server which integrates the task results from all the clients into the overall solution.[6][7] In another approach, a large number of dedicated processors are placed in close proximity to each other (e.g. in a computer cluster); this saves considerable time moving data around and makes it possible for the processors to work together (rather than on separate tasks), for example in mesh and hypercube architectures.
The use of multi-core processors combined with centralization is an emerging trend; one can think of this as a small cluster (the multicore processor in a smartphone, tablet, laptop, etc.) that both depends upon and contributes to the cloud.[8][9]
Contents
1 History
2 Hardware and architecture
2.1 Energy usage and heat management
3 Software and system management
3.1 Operating systems
3.2 Software tools and message passing
4 Distributed supercomputing
4.1 Opportunistic approaches
4.2 Quasi-opportunistic approaches
5 Performance measurement
5.1 Capability vs capacity
5.2 Performance metrics
5.3 The TOP500 list
6 Largest Supercomputer Vendors according to the total Rmax (GFLOPS) operated
7 Applications
8 Research and development trends
9 Energy use
10 See also
11 Notes and references
12 External links
History
Main article: History of supercomputing
A Cray-1 preserved at the Deutsches Museum
The history of supercomputing goes back to the 1960s, with the Atlas at the University of Manchester and a series of computers at Control Data Corporation (CDC), designed by Seymour Cray. These used innovative designs and parallelism to achieve superior computational peak performance.
The Atlas was a joint venture between Ferranti and the Manchester University and was designed to operate at processing speeds approaching one microsecond per instruction, about one million instructions per second.[11] The first Atlas was officially commissioned on 7 December 1962 as one of the world's first supercomputers – considered to be the most powerful computer in the world at that time by a considerable margin, and equivalent to four IBM 7094s
The CDC 6600, released in 1964, was designed by Cray to be the fastest in the world by a large margin. Cray switched from germanium to silicon transistors, which he ran very fast, solving the overheating problem by introducing refrigeration.Given that the 6600 outran all computers of the time by about 10 times, it was dubbed a supercomputer and defined the supercomputing market when one hundred computers were sold at $8 million each.
Cray left CDC in 1972 to form his own company, Cray Research.Four years after leaving CDC, Cray delivered the 80 MHz Cray 1 in 1976, and it became one of the most successful supercomputers in history. The Cray-2 released in 1985 was an 8 processor liquid cooled computer and Fluorinert was pumped through it as it operated. It performed at 1.9 gigaflops and was the world's fastest until 1990
While the supercomputers of the 1980s used only a few processors, in the 1990s, machines with thousands of processors began to appear both in the United States and Japan, setting new computational performance records. Fujitsu's Numerical Wind Tunnel supercomputer used 166 vector processors to gain the top spot in 1994 with a peak speed of 1.7 gigaFLOPS (GFLOPS) per processor. The Hitachi SR2201 obtained a peak performance of 600 GFLOPS in 1996 by using 2048 processors connected via a fast three-dimensional crossbar network. The Intel Paragon could have 1000 to 4000 Intel i860 processors in various configurations, and was ranked the fastest in the world in 1993. The Paragon was a MIMD machine which connected processors via a high speed two dimensional mesh, allowing processes to execute on separate nodes, communicating via the Message Passing Interface.
"High-performance computing" redirects here. For narrower definitions of HPC, see high-throughput computing and many-task computing. For other uses, see Supercomputer (disambiguation).
The Blue Gene/P supercomputer at Argonne National Lab runs over 250,000 processors using normal data center air conditioning, grouped in 72 racks/cabinets connected by a high-speed optical network
A supercomputer is a computer with a high-level computational capacity. Performance of a supercomputer is measured in floating point operations per second (FLOPS). As of 2015, there are supercomputers which can perform up to quadrillions of FLOPS.
Supercomputers were introduced in the 1960s, made initially, and for decades primarily, by Seymour Cray at Control Data Corporation (CDC), Cray Research and subsequent companies bearing his name or monogram. While the supercomputers of the 1970s used only a few processors, in the 1990s machines with thousands of processors began to appear and, by the end of the 20th century, massively parallel supercomputers with tens of thousands of "off-the-shelf" processors were the norm. Since its introduction in June 2013, China's Tianhe-2 supercomputer is currently the fastest in the world at 33.86 petaFLOPS (PFLOPS), or 33.86 quadrillions of FLOPS.
Supercomputers play an important role in the field of computational science, and are used for a wide range of computationally intensive tasks in various fields, including quantum mechanics, weather forecasting, climate research, oil and gas exploration, molecular modeling (computing the structures and properties of chemical compounds, biological macromolecules, polymers, and crystals), and physical simulations (such as simulations of the early moments of the universe, airplane and spacecraft aerodynamics, the detonation of nuclear weapons, and nuclear fusion). Throughout their history, they have been essential in the field of cryptanalysis.
Systems with massive numbers of processors generally take one of two paths: In one approach (e.g., in distributed computing), a large number of discrete computers (e.g., laptops) distributed across a network (e.g., the Internet) devote some or all of their time to solving a common problem; each individual computer (client) receives and completes many small tasks, reporting the results to a central server which integrates the task results from all the clients into the overall solution.In another approach, a large number of dedicated processors are placed in close proximity to each other (e.g. in a computer cluster); this saves considerable time moving data around and makes it possible for the processors to work together (rather than on separate tasks), for example in mesh and hypercube architectures.
The use of multi-core processors combined with centralization is an emerging trend; one can think of this as a small cluster (the multicore processor in a smartphone, tablet, laptop, etc.) that both depends upon and contributes to the cloud.
Contents
1 History
2 Hardware and architecture
2.1 Energy usage and heat management
3 Software and system management
3.1 Operating systems
3.2 Software tools and message passing
4 Distributed supercomputing
4.1 Opportunistic approaches
4.2 Quasi-opportunistic approaches
5 Performance measurement
5.1 Capability vs capacity
5.2 Performance metrics
5.3 The TOP500 list
6 Largest Supercomputer Vendors according to the total Rmax (GFLOPS) operated
7 Applications
8 Research and development trends
9 Energy use
10 See also
11 Notes and references
12 External links
History
Main article: History of supercomputing
A Cray-1 preserved at the Deutsches Museum
The history of supercomputing goes back to the 1960s, with the Atlas at the University of Manchester and a series of computers at Control Data Corporation (CDC), designed by Seymour Cray. These used innovative designs and parallelism to achieve superior computational peak performance.
The Atlas was a joint venture between Ferranti and the Manchester University and was designed to operate at processing speeds approaching one microsecond per instruction, about one million instructions per second.[ The first Atlas was officially commissioned on 7 December 1962 as one of the world's first supercomputers – considered to be the most powerful computer in the world at that time by a considerable margin, and equivalent to four IBM 7094s.
The CDC 6600, released in 1964, was designed by Cray to be the fastest in the world by a large margin. Cray switched from germanium to silicon transistors, which he ran very fast, solving the overheating problem by introducing refrigeration. Given that the 6600 outran all computers of the time by about 10 times, it was dubbed a supercomputer and defined the supercomputing market when one hundred computers were sold at $8 million each
Cray left CDC in 1972 to form his own company, Cray Research.Four years after leaving CDC, Cray delivered the 80 MHz Cray 1 in 1976, and it became one of the most successful supercomputers in history.[18][19] The Cray-2 released in 1985 was an 8 processor liquid cooled computer and Fluorinert was pumped through it as it operated. It performed at 1.9 gigaflops and was the world's fastest until 1990
While the supercomputers of the 1980s used only a few processors, in the 1990s, machines with thousands of processors began to appear both in the United States and Japan, setting new computational performance records. Fujitsu's Numerical Wind Tunnel supercomputer used 166 vector processors to gain the top spot in 1994 with a peak speed of 1.7 gigaFLOPS (GFLOPS) per processor The Hitachi SR2201 obtained a peak performance of 600 GFLOPS in 1996 by using 2048 processors connected via a fast three-dimensional crossbar network. The Intel Paragon could have 1000 to 4000 Intel i860 processors in various configurations, and was ranked the fastest in the world in 1993. The Paragon was a MIMD machine which connected processors via a high speed two dimensional mesh, allowing processes to execute on separate nodes, communicating via the Message Passing Interface.
No comments:
Post a Comment